

DESIGN AND IMPLEMENTATION OF

A HIGH SPEED MOBILE ROBOT

FOR TESTING

A NEURAL NETWORK CRASH AVOIDANCE SYSTEM

by

YOICHIRO ENDO

Submitted in partial fulfillment of the requirements

for the Degree of Master of Science

Thesis Advisor: Dr. Roger D. Quinn

Department of Mechanical and Aerospace Engineering

CASE WESTERN RESERVE UNIVERSITY

May, 1998

 ii

DESIGN AND IMPLEMENTATION OF
A HIGH SPEED MOBILE ROBOT

FOR TESTING
A NEURAL NETWORK CRASH AVOIDANCE SYSTEM

Abstract

by

YOICHIRO ENDO

Development of a crash avoidance system that can automatically divert an

automobile from predicted up-coming collisions is ever more crucial as people

rely more on automobiles. The purpose of this thesis is to build a mobile robot to

test a neural network crash avoidance system that is based upon the cockroach

escape circuit to provide a key to a crash avoidance system for future

automobiles.

In this thesis, the robot hardware was integrated with a digital signal processor

(DSP) and twelve sonar sensors, and an assembler code was developed to control

the robot through the DSP. Since the neural network crash avoidance system is

not yet ready for implementation, a simple crash avoidance algorithm, which

commands the robot to perform single wall following, was also developed.

The result of the test program proved that both hardware and software of the

mobile robot are fully functional and ready for implementation of the neural

network crash avoidance system.

 iii

DEDICATION

and those who, unfortunately, lost their lives in automobile accidents.

I hope this technology will help to reduce such tragedies in the future.

 iv

ACKNOWLEDGEMENT

I would like to greatly thank the following people who supported this thesis.

(In alphabetical order.)

Mr. Nicholas A. Barendt

Dr. Michael S. Branicky

Mr. Mark Dohring

Mr. Chan-Doo Jeong

Mr. Phillip S. Lehmann

Dr. Joseph M. Mansour

Mr. John D. Martens

Dr. Roger D. Quinn

Mr. Yuandao Zhang

 v

TABLE OF CONTENTS

ABSTRACT.. ii

DEDICATION ... iii

ACKNOWLDEGEMENT .. iv

TABLE OF CONTENTS... v

LIST OF FIGURES.. ix

LIST OF TABLES.. xi

CHAPTER I - INTRODUCTION..1

1.1 Motivation...1

1.2 Related Work ..2

1.2.1 Force Field ...2

1.2.2 Vector Field Histogram ..3

1.2.3 Fuzzy Logic..4

1.2.4 Neural Network ..5

1.3 Chen’s Crash Avoidance System..6

1.4 ROACH ..8

CHAPTER II - MOBILE ROBOT HARDWARE.. 10

2.1 Hardware Criteria .. 10

2.1.1 Mobility ... 10

2.1.2 Agility .. 10

2.1.3 Durability ... 11

2.2 Hardware Overview... 11

 vi

2.3 Components Description.. 12

2.3.1 Receiver ... 12

2.3.2 Servo .. 13

2.3.3 Speed Controller... 13

2.3.4 Motor ... 14

2.3.5 Sonar Sensors ... 14

2.3.6 DSP Board.. 16

2.3.6.1 DSP.. 17

2.3.6.2 RAM .. 18

2.3.6.3 Expansion Connecters .. 19

2.3.7 Electric Circuit Boards ... 20

2.3.8 Batteries ... 22

2.3.9 Wheels ... 23

2.3.10 Frame ... 23

2.3.11 Bumper... 23

 CHAPTER III - MOBILE ROBOT SOFTWARE ... 25

3.1 Software Overview.. 25

3.2 Control Algorithm ... 25

3.2.1 Routines .. 26

3.2.1.1 Timer-Setup ... 27

3.2.1.2 Timer-Reset.. 27

3.2.1.3 Pulse-In .. 28

3.2.1.4 Selection Block .. 28

3.2.1.5 Pulse-Out ... 29

 vii

3.2.1.6 Stand-By .. 29

3.2.2 DSP Timer Configuration ... 29

3.3 Simple Crash Avoidance Algorithm .. 30

CHAPTER IV - IMPLEMENTATION.. 32

4.1 Test Program... 32

4.2 Result .. 32

CHAPTER V - CONCLUSIONS, DISCUSSION, AND FUTURE WORK 34

5.1 Conclusions... 34

5.2 Discussion ... 35

5.2.1 Design Criteria and ROACH Hardware 35

5.2.1.1. Mobility ... 35

5.2.1.2. Agility .. 35

5.2.1.3. Durability ... 36

5.2.2 Current Software Problem .. 36

5.2.3 Improvements... 37

5.2.3.1 Sonar Sensors... 37

5.2.3.2 DSP.. 38

5.2.3.3 Bumper .. 39

5.2.3.4 Alarm Set ... 39

5.2.3.5 Feedback Devices... 39

5.3 Future Work .. 40

FIGURES.. 41

TABLES ... 69

REFERENCES.. 73

 viii

APPENDIX A - ROACH DIMENSIONS .. 76

APPENDIX B - LIST OF COMPONENTS ... 80

APPENDIX C - CONTROL ALGORITHM .. 82

APPENDIX D - SIMPLE CRASH AVOIDANCE ALGORITHM
(In C Language: as an External Program)............................... 92

APPENDIX E - SIMPLE CRASH AVOIDANCE ALGORITHM
(In Assembly Language) .. 94

APPENDIX F - SIMPLE CRASH AVOIDANCE ALGORITHM
(In Assembly Language: as an External Program) 96

APPENDIX G - CONTROL ALGORITHM - C INTERFACE 100

 ix

LIST OF FIGURES

1.1 ROACH - Picture .. 41

2.1 ROACH - AutoCAD Drawing ... 42

2.2 Information Process - RC Car .. 43

2.3 Information Process - ROACH .. 44

2.4 Servo ... 45

2.5 50 Hz Pulses from the Receiver ... 46

2.6 Mabuchi Motor RS-540SH Data Sheet .. 47

2.7 Sonar Sensor Signals ... 48

2.8 Time-of-Flight ... 49

2.9 Blanking Time Configuration .. 50

2.10 Trace of the Sonar Pulse-Signals.. 51

2.11 Circular Array of the Sonar Sensors... 52

2.12 Numbers of the Sonar Sensors ... 53

2.13 ADSP-2181 EZ-KIT Lite... 54

2.14 Electric Circuit - the DSP Board to Other Components 55

2.15 Sonar Interface Circuit... 56

2.16 Sonar Sensors Wiring .. 57

2.17 Voltage Regulators .. 58

2.18 Electric Circuit Board Layout - Board-A ... 59

2.19 Electric Circuit Board Layout - Board-B.. 60

2.20 Rear Wheel Component... 61

 x

2.21 Frame .. 62

2.22 Bumper.. 63

3.1 Time Shedule for the Control Algorithm.. 64

3.2 Single Wall Following ... 65

4.1 Wall Following - Straight .. 66

4.2 Wall Following - Right Turn ... 67

4.3 Wall Following - Left Turn.. 68

 xi

LIST OF TABLES

2.1 Expansion Connector - P2 ... 69

2.2 Expansion Connector - P3 ... 70

2.3 Demultiplexer.. 71

3.1 Interrupt Vector Table for the Control Algorithm....................................... 72

 1

CHAPTER I

INTRODUCTION

1.1 Motivation

Because lifestyles of people in modern society heavily rely on motor vehicles,

many people lose their lives in traffic accidents. National Highway Traffic Safety

Administration (NHTSA) reported that, in 1996, there were 6.8 million traffic

crashes in the United States, which killed 41,907 people (NHTSA, 1996).

To prevent loss of life from crashes, installation of seat belts and air bags

became standard for automobiles. However, because such technology is not yet

commercially available, automobiles are not equipped with any crash avoidance

system that can actively divert the vehicles from predicted up-coming collisions.

Numbers of studies have been conducted and methods have been introduced

for crash avoidance systems, especially, in the robotics field. Among theses

studies, installing a biologically inspired crash avoidance system (Chen, 1996 and

Chen et al., 1997), based on a neural network algorithm for the cockroach escape

circuit, seems promising for automobiles in the future to perform real-time crash

avoidance.

The goal of this thesis is to design and build a mobile robot for

implementation of this crash avoidance system, which has been only tested in

simulation. It is anticipated that this work will be a key to the implementation of

the crash avoidance system on an actual size automobile.

 2

1.2 Related Work

In the field of robotics, it is essential for a robot, whether it is a mobile robot

or a stationary industrial robot with a moving manipulator, to be equipped with a

crash avoidance or obstacle avoidance system to perform its task in an obstructed

environment. Many researchers have studied and developed various approaches

for obstacle avoidance including use of a force field, vector field histogram, fuzzy

logic, and neural network.

1.2.1 Force Field

One of the classic approaches for obstacle avoidance is to use a force field, or

an artificial potential field. In the context of manipulator collision avoidance, for

example, the force field approach assumes that the manipulator moves in a field

of force; the position of the manipulator to be reached is an attractive pole for the

end effector and obstacles are repulsive surfaces for the manipulator parts

(Khatib, 1986). Based on the data obtained from a vision sensor, Khatib (1986)

achieved real-time obstacle avoidance of a robot manipulator by applying a time-

varying artificial potential field. Brooks (1986) and Arkin (1989) applied the force

field approach to mobile robots to perform static obstacle avoidance using sonar

sensors.

However, the force field approach is only guaranteed to prevent collisions in a

static environment (Newman and Hogan, 1987). Furthermore, Koren and

Borenstein (1991) found that applying the force field approach on a mobile robot

 3

has four severe limitations; 1.) Trap situations due to local minima; 2.) No

passage between closely spaced obstacles; 3.) Oscillations in the presence of

obstacles; 4.) Oscillations in narrow passages. Yung and Ye (1996) also pointed

out that finding the force coefficients that influence the velocity and direction of

the mobile vehicle is difficult in a cluttered environment which is too complex to

be embedded in a mathematical model.

1.2.2 Vector Field Histogram

A useful approach for a mobile robot to perform obstacle avoidance is the

Vector Field Histogram (VFH) method that utilizes a two-dimensional Cartesian

Histogram Grid. Based on the continuously updated data from onboard sonar

sensors, Borenstein and Koren (1990) employed the VFH method to designate the

certainty value in each cell of the Histogram Grid as the confidence of the

algorithm in the existence of an obstacle at that location. After converting the

two-dimensional Histogram Grid into a one-dimensional Polar Histogram, which

represents the polar obstacle density around the robot, the robot performs obstacle

avoidance by moving towards the sector that contains low obstacle density and is

close to the target. This method allows a robot to navigate through a narrow

passage without oscillations. Borenstein and Koren (1991) integrated the VFH

method into a mobile robot with 24 sonar sensors onboard, and could perform

real-time obstacle avoidance with an average speed of 0.54 m/s (1.77 ft/s).

Gourley and Trivedi (1994) also achieved real-time obstacle avoidance by

 4

implementing a simplified version of the VFH method on a mobile robot, ELVIS,

with 16 sonar sensors onboard. Instead of using the occupancy grids, the heading

direction of ELVIS was determined by a sum of a desired direction and a resultant

of the 16 weighted vectors that were calculated from the inverted reading vectors

of the sonar sensors times their associated weights. The average speeds of the

robot were 0.32 m/s (1.05 ft/s) in a hallway and 0.17 m/s (0.56 ft/s) in a cluttered

lab.

1.2.3 Fuzzy Logic

Use of fuzzy logic, is another alternative approach for a mobile robot to

perform crash avoidance. The nature of fuzzy logic is highly mathematical, and it

can provide a robust and consistent foundation for information processing,

including pattern-formatted information processing (Pao, 1989).

Yung and Ye (1996) developed a self-learning fuzzy navigation method,

which utilizes fuzzy logic and reinforcement learning; the fuzzy rules of the on-

line obstacle avoidance of a mobile vehicle are learned through reinforcement

learning. The advantages of this method are high learning speed, high number of

learned rules, high adaptability, and reliable convergence of the learning network.

This method was verified, in a simulation program, as an effective learning

method for the mobile vehicle to perform obstacle avoidance.

The fuzzy control system that Ming et al. (1995) developed also allows a

mobile robot to avoid unexpected obstacles in a partially unknown environment.

 5

The fuzzy control system is a rule-based system that utilizes fuzzy linguistic

variables to model rules given by a human. Membership functions translate the

selected fuzzy linguistic variables into the precise numeric values needed by a

computer. To optimize the system, genetic algorithms, a search technique

analogous to evolution, were used to select the best membership functions for the

fuzzy control system. In a simulation program, the fuzzy control system caused

the mobile robot, equipped with sonar sensors, to perform wall-following obstacle

avoidance.

1.2.4 Neural Network

The biologically inspired crash avoidance system, described in section 1.3, is

a neural network based upon the cockroach escape circuit. Employing a neural

network algorithm seems to be a promising approach for obstacle avoidance of a

mobile robot. The advantage of the neural network is its ability to learn, and it can

be implemented rather easily on a microcomputer (Touretzky and Pomerleau,

1989).

An interesting project that verified the power of the neural network is

Autonomous Land Vehicle In a Neural Network (ALVINN), developed by

Pomerleau (1993). ALVINN was implemented on an automobile utilizing the

backpropagation method to perform autonomous road following. The neural

network consists of three layers: an input layer of a two-dimensional image from

a video camera or scanning laser rangefinder, a hidden layer, and an output layer

 6

of a vector of units representing different steering responses. ALVINN trains the

network by observing a person driving the vehicle. According to the latest record

quoted in the web site* of this project, ALVINN has successfully driven

autonomously at speeds of up to 70 mph for over 90 miles of a multilane highway

after about three minutes of observing a person driving. ALVINN also performed

static obstacle avoidance by employing the laser range images. However, due to

the slow sampling rate, two images per second, of the laser rangefinder, the

obstacle avoidance could not have been achieved at high speed.

Schiller and Tench (1989) also demonstrated the strength of neural networks

by applying the backpropagation method to the guidance of an autonomous

underwater vehicle (AUV). This network also consists of three layers. The inputs

of the guidance system are the readings of nine onboard sonar sensors and the

difference between the current AUV course and the straight-line course required

to reach the goal point. A course correction, how far left or right of the current

course the AUV should be directed, is the output. Even though it was only

implemented in a simulation program, after a few hundred steps of training, the

AUV learned the way to avoid obstacles and navigate towards the goal.

1.3 Chen’s Crash Avoidance System

Chun-Ta Chen in collaboration with Roger D. Quinn and Roy E. Ritzmann

developed a crash avoidance system for automobiles as his Ph.D. dissertation

* http://www.cs.cmu.edu/afs/cs.cmu.edu/project/alv/member/www/projects/ALVINN.html

 7

(1996) in the Bio-Robotics Laboratory, Case Western Reserve University (Chen

at al., 1997). Chen’s crash avoidance system utilizes a neural network algorithm

based upon a distributed network of artificial neurons that mimic the neural

organization of the escape circuit in the American cockroach, Periplaneta

americana. A neural network algorithm for the cockroach escape circuit was

originally developed by Beer and Chiel (1993) based upon results of a research

conducted on the cockroach in the Ritzmann Laboratory, Case Western Reserve

University.

The cockroach detects wind caused by an approaching predator with sensitive

hairs located on its cerci, two antenna-like appendages on the rear of its abdomen.

Based on the wind information, the thoracic interneurons send signals to the leg

motor neurons to move the cockroach away from the predator (Ritzmann, 1993).

The cockroach can perform this escape response very rapidly, in approximately

60 ms. Ritzmann believed that the cockroach escape circuit satisfies all of the

requirements for a successful crash avoidance system for automobiles.

The neural network algorithm of Chen’s crash avoidance system utilizes the

backpropagation method. Layers of artificial neurons learn the pattern of input-

output training sets through many iterations, and store the pattern into connection

weights. Based on the weights of the recognized pattern, the network can rapidly

compute an output from a newly fed input. This method allows the crash

avoidance system to learn the pattern of a crash avoidance strategy off-line, and

provide on-line real-time collision avoidance control to the vehicle.

 8

The control of Chen’s crash avoidance system is semiautonomous. A driver

can operate the vehicle normally unless a collision is foreseen. When the up-

coming collision is predicted, the crash avoidance system takes over the driver’s

control of the vehicle, and attempts to avoid the collision by steering,

accelerating, or braking. The prediction of the collision, crash alarm set, is based

on the present state of the obstacle with respect to the vehicle. Onboard sonar

sensors detect the location of the obstacle as well as its heading speed and

direction. The current and previous readings of the sonar sensors are sent to the

crash avoidance system, so that, along with the current speed and steering angle

of the vehicle, it can calculate the present state of the obstacle. The system was

shown to be very successful in simulation.

1.4 ROACH

In order to implement Chen’s crash avoidance system, a mobile robot,

ROACH* (Fig. 1.1), was built at the Center for Automation and Intelligent

Systems Research, Case Western Reserve University. The hardware and software

features of the robot are reported in this thesis. The hardware aspect is described

in Chapter II. Chapter III deals with the software aspect. While modification of

the algorithm for Chen’s crash avoidance system is in progress to be retrofitted

into the robot, ROACH was tested with a simple obstacle avoidance algorithm

* The Robot with an Obstacle Avoidance System and Controller for High Speed Mobility

 9

that could check the capability of the robot. Implementation of the test program is

described in Chapter IV. The conclusions, discussion, and future work of this

project are in Chapter V.

 10

CHAPTER II

MOBILE ROBOT HARDWARE

2.1 Hardware Criteria

Before ROACH was built, in order for the robot to achieve its mission

properly, the following three points were considered as criteria to construct the

hardware of the robot:

1.) mobility

2.) agility

3.) durability

2.1.1 Mobility

Since the robot is meant to simulate the characteristic of an automobile, it is

mobilized with four wheels driven by an electric motor. In order to provide the

robot full mobility, it is also important that no cables are attached to the robot

from any stationary device: a power-plug in a wall or a serial port of a personal

computer, for example.

2.1.2 Agility

The robot had to be able to run at high speeds to simulate scaled automobile

highway speeds. In order to produce such high speed, the robot is fabricated with

many of the light components from a radio controlled model car.

 11

2.1.3 Durability

Numbers of collisions are expected to occur during debugging of the system

because the purpose of the robot is to test the crash avoidance system, which has

never been tested besides in simulation. Thus, the robot has to be durable to the

shocks caused by collisions.

2.2 Hardware Overview

ROACH is a four-wheel mobile robot that is fabricated with many of the

components from a 1:10 scale radio controlled (RC) car, Tamiya Blackfoot Ford

F-150 Ranger. The frame of the RC car was reconstructed to mount twelve sonar

sensors, a digital signal processing (DSP) board, and electric circuit boards on the

robot. A front bumper was also added to the robot to reduce the shock in case of

collisions during operation.

The size of ROACH is 18.6-inch long, 12.5-inch wide, and 10.0-inch tall

(Appendix A). The robot weighs 10 pounds, and has a 10 ft/s maximum speed and

13° maximum steering angle to both the left and right.

ROACH was designed to be for in-lab use only, and it does not resist water or

dirt. Since it is going to be tested only on the flat surface of the lab, it has a rigid

suspension.

 12

2.3 Components Description

As they are also labeled in Fig. 2.1 and listed in Appendix B, ROACH

consists of the following components*:

1.) receiver (1)

2.) servo (1)

3.) speed controller (1)

4.) motor (1)

5.) sonar sensors (12)

6.) DSP board (1)

7.) electric circuit boards (2)

8.) batteries (2)

9.) wheels (4)

10.) frame (1)

11.) bumper (1)

2.3.1 Receiver

The receiver, Futaba FP-R112JE, is equipped with a built-in pulse modulator.

It receives radio signals, carrying data for desired speed (v) and steering angle (φ),

from a transmitter. It converts the radio signals into two channels (CH1 and CH2)

of 50 Hz 5-volt pulses. As shown in Fig. 2.2, in the case of an RC car, the 50 Hz

pulses in CH1 are sent directly to the servo, and the pulses in CH2 are sent to the

* Numbers in brackets indicate quantity.

 13

speed controller. In case of ROACH, on the other hand, the 50 Hz pulses from the

receiver are intercepted by the DSP as shown in Fig. 2.3. The DSP also receives

signals from the sonar sensors. The DSP generates its own 50 Hz pulses based on

the crash avoidance algorithm, and sends them to the servo and speed controller.

2.3.2 Servo

When the servo, Futaba FP-S148, receives the 50 Hz pulses, it revolves a

servo horn, the rotation part of the servo, connected to the front wheels of the

robot through rods (Fig. 2.4). When the servo horn rotates, the front wheels also

turn. The rotation angle of the servo horn is determined by the pulse width of each

pulse (Fig. 2.5). From observation, when the pulse width sent to the servo is 1.42

ms, the steering angle of the front wheels reaches its maximum to the right, 13°

clockwise. The front wheels turns the maximum steering angle to the left, 13°

counterclockwise, when the pulse width is 0.86 ms.

2.3.3 Speed Controller

The speed controller, Dynamite Power Pulse Speed Control (1996), sends

current to the motor when it receives the 50 Hz pulses. The amount of current is

proportional to the input pulse width. Thus, the speed of the motor is also

proportional to the pulse width. When the pulse width is 1.14 ms, the speed

controller sends the maximum current, 180 A, and the motor spins forward with

its maximum speed. The motor stops spinning when the pulse width is 1.42 ms.

 14

When the pulse width is more than 1.42 ms, the motor spins backwards.

2.3.4 Motor

The 7.2-volt DC brush motor drives the rear wheels of the robot with respect

to the amount of the current received from the speed controller. The motor is

manufactured by Johnson; however, the data of Johnson’s motor was not

available. The characteristics of the motor were estimated from the same type of

motor, Mabuchi Motor RS 540SH. As the graph in Fig. 2.6 shows, this type of

motor can produce 1,900 g⋅cm (0.186 N⋅m) maximum torque when 50 A current

is applied, and can spin as fast as 16,000 rpm with no load.

2.3.5 Sonar Sensors

An array of sonar sensors is mounted on top of the robot platform to measure

the distance between the robot and surrounding obstacles. It sits 9.2 inches high

from the ground. Each sonar sensor is fabricated from a transducer, Polaroid 600

Series Instrument Grade Electrostatic Transducer, and an ultrasonic circuit board,

Polaroid 6500 Series Sonar Ranging Module (1991).

When the initiate input (INIT) pin on the circuit board is raised from LO (0-

volt) to HI (5-volt), the transducer fires 16 cycles of sonar pulse-signals at a

frequency of 49.4 kHz. When the transducer detects the returning signals bounced

back from an obstacle, the circuit board sets the echo output (ECHO) pin to HI

(Fig. 2.7).

 15

The output from the sonar sensor does not include a direct measurement of

time. Thus, the internal timer of the DSP is used to measure the time-of-flight or

duration of the sonar pulse-signals. The time-of-flight of the sonar pulse-signals is

taken from the time difference (/t) between when the INIT pin is raised to HI and

when the ECHO pin is raised to HI (Fig. 2.8).

The distance (r) between the robot and the obstacle is one half of the path

length that the sonar pulse-signals travel with the speed of sound (c):

In order to avoid detecting the pulse-signals bounced back from its own

components instead of the obstacle, the sonar sensor can disable the detection of

the pulse-signals during a blanking time. The blanking time is pre-configured for

2.38 ms by the manufacturer, and can be reconfigured by sending input signals to

the blanking (BLNK) pin and blanking inhibit (BINH) pin on the ultrasonic

circuit board. When the voltage on the BLNK pin is set to HI, the sonar sensor

does not detect the incoming pulse-signals from the transducer. The BINH pin has

to be raised to HI prior to the blanking time in order to activate the BLNK pin. If

the obstacle needs to be detected earlier than the pre-configured blanking time,

2.38 ms, as it is shown in Fig. 2.9, the BLNK pin and BINH pin should be kept

LO until a desired reading time starts. When the desired reading time begins, the

BINH pin should be set to HI while keeping the BLNK pin LO. The blanking

time for ROACH is configured with this setup, and it can detect obstacles as close

2

(ms) t(ft/ms) c
(ft)r

δ×= Eqn. 2.1

 16

as 6 inches.

The maximum distance of the sonar sensor being able to detect an obstacle is

approximately 35 feet. However, due to the time reserved for the sonar sensor

routine in the control algorithm, the maximum distance that ROACH is able to

detect an obstacle is 7 feet. The time constraint for the control algorithm is

explained in section 3.2.

As it is shown in Fig. 2.10, each transducer transmits its sonar pulse-signals in

a 30° angle cone. Thus, in order for the robot to scan the 360° horizontal

direction, twelve sonar sensors are mounted to form a circular array (Fig. 2.11).

The sonar sensors are numbered from 0 to 11 (Fig. 2.12). The robot can

simultaneously fire two sonar sensors that are 180° apart, and six sonar sets are

alternatively fired to complete the entire 360° scan. The first sonar set, Sonar-Set

1, is the pair of Sonar 0 and 6; Sonar-Set 2, 3, 4, 5, and 6 are pairs of Sonar 3 - 9,

1 - 7, 4 - 10, 2 - 8, and 5 - 11, respectively. When more than two sonar sensors

detect obstacles at the same time, the robot concentrates on the closest one.

2.3.6 DSP Board

The DSP board is analogous to the nerve center of the robot. The function of

the DSP board is to control the actuators, activate the sonar sensors, and compute

proper values for the speed and steering angle of the robot to avoid obstacles.

The DSP board, Analog Devices ADSP-2181 (1995) EZ-KIT Lite (1995),

shown in Fig. 2.13, has the following features that are utilized by ROACH:

 17

1.) digital signal processor (DSP)

2.) random access memory (RAM)

3.) expansion connectors

2.3.6.1 DSP

The 16-bit fixed-point DSP, which is integrated into the DSP board, executes

instructions of an executable (EXE) machine code in the RAM with an instruction

cycle-time of 30 ns (33 MHz). The EXE file is created from a code written in

assembly language using the Assembler and Linker (Analog Devices, 1994). A

code written in C language can also be converted into assembly language using

the C Compiler (Analog Devices, 1994). Thus, the crash avoidance algorithm

written in C language can be converted into assembly language, so that it can be

linked to the EXE file. ADSP-2181 was designed for 16-bit fixed-point signal

processing, so that it slows down the performance when it is processing the 32-bit

floating-point data. Thus, floating-point data in the program should be converted

into fixed-point data if possible.

The EXE file can be downloaded from a personal computer (PC) through the

serial port by running the EZ-KIT Lite Host Program (Analog Devices). Since the

serial cable can be detached from the serial port connector on the DSP board after

downloading, it allows the robot to operate without any cables attached from the

PC.

Because the assembler code is written in a low-level language, not only can it

 18

perform simple calculations, but also it can modulate the digital signals of the

expansion connectors on the DSP board. This feature allows the DSP to control

other components of the robot, such as the servo and speed controller. The control

algorithm developed for ROACH is described in section 3.2.

2.3.6.2 RAM

The EXE file stored in the RAM is divided and allocated to 24-bit program

memory (PM) and 16-bit data memory (DM) segments. The PM and DM can be

downloaded either together or separately. The RAM can store 16K words (48 KB)

PM and 16K words (32 KB) DM. The maximum size of downloadable PM is,

however, about 14K words because about 2K words of PM are reserved for the

host program to link the DSP to the PC.

When the power for the DSP board is turned off, the memory in the RAM

clears its contents, and the program needs to be loaded into the RAM each power-

up reset. The program can be downloaded from the PC through the serial port

connector each power-up reset, or from an erasable-programmable read-only

memory (EPROM), which can permanently store the program inside the DSP

board.

The Prom Splitter (Analog Devices) creates a programmable read-only

(PROM) file from the EXE file. With an EPROM programmer, the PROM file

can be programmed into the EPROM. The DSP has a socket into which the

EPROM can be inserted, and the contents of the EPROM can be loaded into the

 19

RAM upon the power-up reset or when the reset button on the DSP board is

pushed. The contents of the EPROM can be erased only by exposure to ultraviolet

light.

Nevertheless, the EPROM is not utilized to store the program in this project

because numbers of experimental programs are to be tested in the robot, and quick

changeover of the programs is preferred.

2.3.6.3 Expansion Connectors

Two sets of the 50-pin expansion connectors (P2 and P3) allow the DSP board

to interface with external components. Each pin is assigned to a DSP signal, and

the name of each signal is listed in Tables 2.1 and 2.2. Out of the 50 pins of P3,

the DSP board utilizes three flag output pins and eight programmable flag pins to

communicate with other components of the robot.

The DSP board can send digital output signals from the flag output pins (FL0,

FL1, and FL2). FL0 and FL2 send the signals to the servo and speed controller,

respectively. FL1 is internally hooked up to the red LED on the DSP board, and is

mainly used for debugging the assembler codes. By hooking up FL1 to an alarm-

set, it can be also used for the robot to give warning signals when an up-coming

collision is predicted by the crash avoidance system.

The programmable flag pins (from PF0 to PF7) can be programmed to be

either input or output pins. PF0 sends the BINH signals to the BINH pin on the

ultrasonic circuit board. PF1 and PF2 receive the CH1 and CH2 pulses from the

 20

receiver, respectively. After two sonar sensors fire the sonar pulses-signals

simultaneously, PF3 reads the ECHO signal (ECHO1) from one of the sonar

sensor, and PF4 receives ECHO2 from the other sonar sensor. The rest of the

programmable flag pins (PF5, PF6, and PF7) are hooked up to the sonar interface

circuit board that selects the set of sonar sensors and sends the INIT signals. The

sonar interface circuit board is explained in the next section (2.3.7).

2.3.7 Electric Circuit Boards

Two electric circuit boards (Board-A and Board-B) were built to equip the

robot with the following features:

1.) interface for the DSP board to the servo

2.) interface for the DSP board to the speed controller

3.) interface for the DSP board to CH1

4.) interface for the DSP board to CH2

5.) interface for the DSP board to the alarm set (for future use)

6.) interface for the DSP board to the ultrasonic circuit board

7.) voltage regulator

The sixth feature, the sonar interface circuit, is divided into two parts and

integrated into both Board-A and Board-B. The rest of the features above are

integrated into only Board-A. The schematic shown in Fig. 2.14 illustrates how

the DSP board is hooked up to other components.

The sonar interface circuit was modified from the one on Martens’ Andros

 21

Mark VI (Martens, 1993). The primary function of the sonar interface circuit is to

reduce the number of the input and output (I/O) signals modulated by the DSP

board, which has limited I/O pins. Since twelve sonar sensors are mounted on

ROACH, and each sonar sensor has three input (INIT, BLNK, and BINH) pins

and one output (ECHO) pin, a total of 48 I/O signals are required to operate all

twelve sonar sensors. As it is shown in Fig. 2.15, the sonar interface circuit

consists of a demultiplexer (74LS138), 24 tristate buffers (74HCT125), and 12

pull-up registers (47 kΩ). Three DSP programmable flag pins (PF5, PF6, and

PF7) are connected to three input pins of the demultiplexer. As it is shown in

Table 2.3, based on the combination of the enabled input pins, the demultiplexer

selects one of six output pins*, which corresponds to one of six sonar sets, and

enables four tristate buffers. Each ultrasonic circuit board receives the INIT signal

from a tristate buffer and returns the ECHO signal to another tristate buffer (Fig.

2.16). The demultiplexer is integrated into Board-A, and the tristate buffers are

integrated into Board-B.

The demultiplexer, tristate buffers, and ultrasonic circuit boards need a 5-volt

power supply. Since the installed 6-cell batteries generate 7.2-volt powers, two

voltage regulators (MC7805C) are integrated into Board-A to reduce the voltage

(Fig. 2.17). One of the 5-volt outputs from the regulators supplies power to the

demultiplexer and tristate buffers. The other 5-volt output supplies power to the

ultrasonic circuit boards.

* The demultiplexer itself is capable of selecting eight output pins.

 22

The two electric circuit boards were made from single-sided, positive-type

etching boards. The layouts used for the etching are shown in Figs. 2.18 and 2.19.

2.3.8 Batteries

Two 6-cell (7.2-volt) rechargeable batteries, Dynamite DYNA-SPORT 1500,

supply power to the robot. One of the batteries, Battery-A, is hooked up to the

speed controller, and supplies power to the speed controller, receiver, servo, and

motor. The other battery, Battery-B, is hooked up to Board-A, and supplies power

to the circuits in Board-A, Board-B, the DSP board, and the ultrasonic circuit

boards.

Since the DSP is sensitive to electrical noises from other components and the

receiver produces relatively large noises, two separate batteries are used, instead

of just one, to stabilize the circuits of the DSP board.

Each battery lasts approximately 5 minutes when it is used full time, and it

requires a charging time of 20 minutes. However, external power sources can

replace Battery-B when the robot is tested in a stationary position. Board-A can

take 5-volt DC power externally and supply the power to Board-A, Board-B, and

the ultrasonic circuit boards. The power for the DSP board can be also supplied

by an adapter that converts 120-volt AC to 9-volt DC power.

 23

2.3.9 Wheels

ROACH is mobilized with four wheels to simulate the characteristics of an

automobile. The front two wheels are connected to the servo for steering. They

can produce the maximum steering angle of 13° both to the left and right. As

shown in Fig. 2.20, the rear two wheels are connected to the motor through four

gears. Gear-1, fixed to the motor shaft, has 10 teeth meshing with 52 teeth of

Gear-2. Gear-2 is fixed to Gear-3, and 17 teeth of Gear-3 meshes with 48 teeth of

Gear-4. Gear-4 drives the shaft of the rear wheels. This configuration produces

one revolution of the rear wheels from approximately 15 revolutions of the motor.

2.3.10 Frame

In order for ROACH to test high speed crash avoidance, the robot should be

as light as possible. Thus, the frame of the robot was made of aluminum, a

lightweight metal. Another advantage of aluminum is its softness for ease of

machining.

As it is shown in Fig. 2.21, the frame of ROACH holds three platforms. The

bottom platform is for mounting the servo, speed controller, batteries, motor,

gearbox, four wheels, and bumper. The middle platform is for the DSP board and

Board-A. The twelve sonar sensors and Board-B are mounted on the top platform.

2.3.11 Bumper

Since the mission of ROACH is to test the crash avoidance algorithm that has

 24

never been tested, besides in a simulation program, errors may lead the robot to

collide with obstacles instead of avoiding them. Shocks of those collisions can

damage the structure or the electric components of the robot. The bumper, shown

in Fig. 2.22, was designed to reduce such damage. The bumper consists of a

mount, a pair of springs, a bumper-frame, and rubber foam.

The mount is fixed to the frame of the robot, and the pair of the springs sits

between the mount and the bumper-frame. When the bumper-frame contacts the

obstacle, the pre-collision kinetic energy is transformed into the post-collision

potential energy of the springs while being compressed. From the conservation of

energy, Eqn. 2.2 formulates the relationship among the distance (x) that the

springs are compressed, the total stiffness (k) of the springs, the mass (m) of the

robot, and the relative velocity (v) between the robot and the obstacle right before

the collision:

The robot weighs 10 pounds (0.311 slugs). Each spring has a stiffness of 26.7

lb/in (53.4 lb/in for the total stiffness) and length of 3.5 inches, which can be

compressed to a half of the size (1.75 inches). Thus, the springs are compressed

all the way when the relative velocity before the collision is 6.6 ft/s. The actual

relative velocity, however, may be expected to be slightly larger because the

rubber foam glued to the bumper-frame also absorbs energy.

(lb/in)k
)/s(ft v(slug) m (in/ft) 12

 (in)x
222××=

Eqn. 2.2

 25

CHAPTER III

MOBILE ROBOT SOFTWARE

3.1 Software Overview

The DSP board, the nerve center of the robot, controls the actuators, activates

the sonar sensors, and computes proper speed and steering angle of the robot.

These tasks are all managed by an execution program downloaded into the RAM

of the DSP board. The execution program is divided into two parts: a control

algorithm, which manages the low-level tasks of the robot, and a crash avoidance

algorithm, which computes the proper speed and steering angle of the robot from

the data given by the control algorithm.

Currently, modification of Chen’s crash avoidance system is in progress to be

retrofitted into ROACH. Thus, a simple crash avoidance algorithm, which is a

substitute for Chen’s crash avoidance, was developed to test the hardware of the

robot.

3.2 Control Algorithm

The control algorithm for ROACH, coded with approximately 500 lines, is

written in assembly language (Appendix C). The low-level tasks that the control

algorithm manages include:

1.) Read the CH1 and CH2 pulses from the receiver.

2.) Send the INIT signals to the sonar sensors.

 26

3.) Read the ECHO signals from the sonar sensors.

4.) Provide the input values to the crash avoidance algorithm.

5.) Receive the output values from the crash avoidance algorithm.

6.) Send the pulses to the servo and speed controller.

As explained in section 2.3.1, the speed controller and servo are specifically

configured for 50 Hz inputs. Hence, it is essential for them to receive pulses from

the DSP board every 20 ms. In order to execute the tasks above with this time

constraint, a timing schedule for the control algorithm was developed. The flow

chart in Fig. 3.1 illustrates the schedule, and is used to describe the structure of

the control algorithm in terms of the routines below.

3.2.1 Routines

Each white box in Fig. 3.1 indicates a routine of the control algorithm. As

shown in Appendix C, the code of the control algorithm is divided into several

segments in terms of tasks they deal with. Each segment is defined as a routine in

this thesis. The routines are executed sequentially after being loaded into RAM.

The routines between Timer-Reset and Stand-By are repeated every 20 ms to

form a loop. In Fig. 3.1, a big gray box, Selection Block, is a group of routines

from which a different set of routines is selected and executed for each 20 ms

loop.

 27

3.2.1.1 Timer-Setup

The first routine, Timer-Setup, handles an initial setup for the DSP timing

configuration. It sets up the timing variables and enables the timer. Details on the

timer configuration are explained in section 3.2.2. This routine, labeled as “start”,

is pointed by the reset interrupt vector address (Table 3.1). Thus, it is executed as

soon as the program is loaded into RAM. However, this routine never ends

because of the infinite loop, Code 3.1, attached at the end of the routine:

The purpose of this infinite loop is to wait for the timer interrupts before the

program finishes the execution.

3.2.1.2 Timer-Reset

The second routine, Timer-Reset, resets the clocks that measure the pulse

widths of CH1 (input), CH2 (input), the servo (output), the speed controller

(output), and the time-of-flight of the sonar pulse-signals (input). This routine

begins when the PF1 pin, connected to CH1, is set to HI. If there is no pulse

coming from CH1, this routine can not be executed, and the rest of the program

will remain idle. Thus, in case of emergency, when the robot needs to be stopped,

an operator can simply turn off the power of the transmitter, so that the pulse will

not be sent to CH1.

wait:

NOP;
jump wait; Code 3.1

 28

3.2.1.3 Pulse-In

The third routine, Pulse-In, starts just after Timer-Reset is executed. At first, it

measures the pulse width of the CH1 pulse by polling the PF1 pin. As soon as the

PF1 pin perceives the falling edge of the CH1 pulse, the PF2 pin starts measuring

the pulse width of the CH2 pulse, which always comes right after the CH1 pulse.

Pulse-In has 3.5 ms execution time to complete its task.

3.2.1.4 Selection Block

After the widths of the CH1 and CH2 pulses are recorded in Pulse-In, the next

routine is selected from Selection Block. Selection Block either activates the

sonar sensors and records the readings, or runs the crash avoidance algorithm.

Sonar-INIT activates the sonar sensor by sending the INIT input to a sonar set.

At each 20 ms loop, one set is chosen from the six sonar sets. Since the six sonar

sets are chosen sequentially with the loops, it takes 120 ms for them to complete

the 360° scan. Sonar-INIT is followed by Sonar-ECHO that reads the ECHO

output and records the time-of-flight of the sonar pulse-signals. An execution time

of 12.6 ms is reserved for Selection Block, so that the sonar sensor can detect

obstacles as far away as 7ft.

After the 360° scan by the sonar sensors is completed, at the next 20 ms loop,

Selection Block runs the crash avoidance algorithm to compute the speed and

steering angle of the robot. Thus, the minimum cycle time that the control

algorithm can update the output values from the crash avoidance algorithm is 140

 29

ms.

3.2.1.5 Pulse-Out

After the routines in Selection Block are completed, Pulse-Out sends pulses to

the servo and speed controller. It raises the voltage on the FL0 and FL2 pins,

connected to the servo and speed controller, respectively, to HI until proper pulse

widths are sent. The execution time for this routine varies with the pulse widths.

3.2.1.6 Stand-By

After Pulse-Out completes delivery of the output pulses to the servo and

controller, the last routine, Stand-By, attempts to find the rising edge of next CH1

input pulse by constantly polling the PF1 pin. When the pin is set to HI, the

execution program goes back to Timer-Reset, the beginning of the 20 ms loop.

3.2.2 DSP Timer Configuration

A programmable internal timer is integrated into the DSP board, and it can

generate periodic interrupts to the execution program. When the execution

program receives the interrupt from the timer, it shifts its execution address to the

timer interrupt vector address, the eleventh row of the interrupt vector table

(Table 3.1), and starts executing the instruction of the address.

The interval of the timer interrupts can be configured by a combination of an

8-bit prescaler register (TSTEP) and a 16-bit count register (TLENGTH). TSTEP

 30

scales the length of a time unit that TLENGTH counts. In the control program, the

value of TSTEP is 40, which corresponds to 1,200 nanoseconds*, and the value of

TLENGTH is 10. Each time when TLENGTH counts TSTEP ten times, taking

0.012 ms, the execution address of the execution program jumps to the timer

interrupt vector address. As it is shown in Table 3.1, the instruction of the control

algorithm at the timer interrupt vector address is “jump update_signal”. The label

“update_signal” is located at the first line of Pulse-In, and the first portion of

Pulse-In determines current status of the program in terms of the time schedule

for the 20 ms loop. For example, if current time is determined to be between 0 and

3.5 ms, the program executes the rest of the instructions in Pulse-In; otherwise, it

skips them, and executes the instructions in an appropriate routine.

Acquiring or producing resolution of the pulses is defined by the interval of

the timer interrupts since it determines how often the pulses are polled or updated.

The interval of the timer interrupts for ROACH, 0.012 ms, allows the robot to

have the resolution of input or output as fine as approximately 0.6° for the

steering angle or approximately 0.9 ft/s for the speed.

3.3 Simple Crash Avoidance Algorithm

The purpose of the simple crash avoidance algorithm is to substitute for

Chen’s crash avoidance system, which is still in progress to be retrofitted into

ROACH. Thus, this algorithm is not meant to perform perfect crash avoidance.

* 40 × 30 ns (a cycle-time of the DSP) = 1,200 ns

 31

The current problem with implementation of Chen’s crash avoidance system is

discussed in section 5.2.2.

The simple crash avoidance algorithm is for ROACH to perform single wall

following, or “a drunken sailor walk” (Arkin, 1989). The robot tries to follow a

wall by maintaining a distance from it (Fig. 3.2). Instead of all twelve sonar

sensors, only three sonar sensors, Sonar 1 to 3, are activated. When one of the

sensors detects the wall within two feet on its right, the robot turns left, 13°, to

stay away from the wall. When there is no wall within two feet, on the other hand,

the robot turns right, 13°, to find the wall. In order to minimize the risk of a

collision, the speed of the robot is directly controlled by an operator.

There are two versions of the simple crash avoidance algorithm: one written in

C language (Appendix D), and the other one written in assembly language

(Appendix E). They were both tested on ROACH to check the compatibility of

the control algorithm (Chapter IV). The one written in assembly language was

originally produced with the C Compiler by converting the one written in C

language. The code that the C Compiler converted was produced as an external

program (Appendix F). Thus, in order for the code to be pasted into the body of

the control algorithm, a portion of the code that dealt with the interface between a

host and external program, such as a function prologue and epilogue, was deleted.

On the other hand, when the crash avoidance is called as an external program

written in C language, an algorithm (Appendix G) that interfaces the assembly

and C languages has to be added to the control algorithm.

 32

CHAPTER IV

IMPLEMENTATION

4.1 Test Program

A test program that consists of the control algorithm and the simple crash

avoidance algorithm was implemented into ROACH to check the performance of

the components. Both versions, in C and assembly languages, of the simple crash

avoidance were tried with the test program to check the compatibility of the

control algorithm.

4.2 Result

All components of ROACH including the receiver, servo, speed controller,

motor, DSP board, sonar sensors, and electric circuit boards worked nominally.

No malfunction was found in the hardware.

The simple crash avoidance in both C and assembly languages produced the

same behavior of the robot. As shown in Fig. 4.1, ROACH with the simple crash

avoidance was able to follow a straight wall in a hallway even though the robot

had a tendency to oscillate its heading direction. ROACH was also able to make a

90° right turn at the edge of the wall (Fig. 4.2). However, ROACH had difficulty

in making a 90° left turn at a corner of two walls unless the angle was reduced

(Fig. 4.3).

ROACH could perform the simple crash avoidance above only at relatively

 33

low speed. The average speed that ROACH could comfortably achieve the

straight wall following was approximately 2.9 ft/s. This is faster than Borenstein

and Koren’s mobile robot (1991), which performed obstacle avoidance with an

average speed of 1.77 ft/s by employing the VFH method. Without any crash

avoidance, however, ROACH is capable of running up to 10 ft/s.

 34

CHAPTER V

CONCLUSIONS, DISCUSSION, AND FUTURE WORK

5.1 Conclusions

ROACH, a four-wheel mobile robot designed to test a biologically inspired

crash avoidance system, was successfully built from both hardware and software

aspects. Integrated components of ROACH include a receiver, a servo, a speed

controller, a motor, twelve sonar sensors, a DSP board, two electric circuit boards,

two batteries, four wheels, a frame, and a bumper. ROACH is capable of running

at speeds up to 10 ft/s. During the 360° scanning by the sonar sensors, ROACH

can detect an obstacle as far away as 7 ft, and as close as 6 inches. ROACH

updates the information of the obstacle every 140 ms. A control algorithm was

developed for the DSP to control the actuators and activate the sonar sensors. In

order to substitute for Chen’s crash avoidance system, which is not yet ready for

implementation, a simple crash avoidance algorithm that commands the robot,

using the data from the control algorithm, to perform single wall following was

also developed. The result of a test program, which consists of the control

algorithm and the simple crash avoidance algorithm, proved that the robot is fully

functional and ready for implementation of Chen’s crash avoidance system.

 35

5.2 Discussion

5.2.1 Design Criteria and ROACH Hardware

The three design criteria, mobility, agility, and durability, which were

considered for construction of the robot hardware (section 2.1), were all satisfied

by ROACH.

5.2.1.1. Mobility

Since ROACH is fabricated with the parts from a 1:10 scale four-wheel RC

car, an operator can maneuver the robot wirelessly. Furthermore, all the low-level

tasks of the control algorithm as well as all the computations necessary for the

crash avoidance algorithm can be achieved by an executable program downloaded

into the RAM of the DSP board. This feature allows ROACH to perform its tasks

without any cables attached from external computers.

5.2.1.2. Agility

ROACH is capable of running at speeds up to 10 ft/s. Thus, ROACH is

capable of simulating an automobile driving on a highway with a speed of 65 mph

(95.3 ft/s), which is 9.5 ft/s* for the 1:10 scale robot.

* Assuming straightforward scaling by length.

 36

5.2.1.3. Durability

A front bumper was constructed and installed on ROACH to protect the

components from unexpected collisions. For absorption of the shock caused by a

collision, the springs of the bumper are compressed all the way when the relative

velocity of the robot with respect to the obstacle before the collision is 6.6 ft/s.

5.2.2 Current Software Problem

The current problem causing the delay of implementing is, however, a

software problem. Even though the control algorithm was proved to be

compatible with the crash avoidance algorithm written in C language, it was

found that the original version of Chen’s crash avoidance algorithm, written in C

language, was too large and too complicated for the DSP. For example, the

original version of Chen’s crash avoidance system required 21k words program

memory while the RAM can store the total program memory of 16K words.

Several modifications of Chen’s crash avoidance algorithm were attempted by

Chan-Doo Jeong, a Ph.D. candidate at Case Western Reserve University, and

myself. The modifications include:

1.) Changing most of the floating-point numbers to fixed-point numbers:

Since the DSP was built for 16-bit signal processing, floating-point

operations require much larger program memory than fixed-point

operations.

2.) Reducing the number of subroutines: Calling many subroutines was

 37

presumed to be the cause of a stack memory overflow, which frequently

halted the program.

3.) Rewriting the entire program in assembly language: Since assembly

language is a low-level language, not only can it provide better

understanding of the machine-level operations, but also, when the

program is halted, the location of the problem can be traced much easier

than in C language.

However, the latest modified version of Chen’s crash avoidance algorithm,

approximately 11,000 lines of an assembler code that is small enough to fit in the

available RAM of the DSP board, still contains bugs that are causing the program

to halt.

5.2.3 Improvements

5.2.3.1 Sonar Sensors

One of the disadvantages of the current configuration of ROACH is the use of

sonar sensors. Even though the sonar sensors can provide necessary information

for crash avoidance of a 1:10 scale mobile robot, they do not apply for an actual

size automobile because of their slow sampling rate. Even if the six sonar sets are

sequentially fired to detect obstacles within 7ft without any interruptions, it takes

at least 75.6 ms to complete the 360° scan because each sonar set requires 12.6 ms

to collect the reading. If a vehicle is moving with a highway speed of 65 mph

(95.3 ft/s), in the 75.6 ms, it can travel approximately 7.2 ft, more than the

 38

distance the sonar sensors can detect. Thus, use of an alternative sensor that has

faster sampling rate is suggested for implementation of Chen’s crash avoidance

system on an actual size automobile. The suggested sensors include radar, a vision

sensor, and an infrared sensor.

5.2.3.2 DSP

As it is described in section 5.2.2, in order to reduce the program memory of

Chen’s crash avoidance system, floating-point numbers were changed to fixed-

point numbers. However, since the fixed-point data, 16-bit, contains a half of the

bits of the floating-point data, 32-bit, preciseness is lost.

According to the latest information found in the web site* of Analog Devices,

a new DSP, ADSP-21060, can handle 32-bit floating-point processing, and it can

store 128K words of 32-bit data, 256K words of 16-bit data, and 80K words of

48-bit instructions in its RAM. On the contrary, ADSP-2181, utilized in this

thesis, can only process 16-bit fixed-point signals, and has RAM that can store

only 16K words of 16-bit data and 16K words of 32-bit instructions. Thus,

replacing the DSP with ADSP-21060 will ease the implementation of the crash

avoidance system.

* http://www.analog.com

 39

5.2.3.3 Bumper

Even though most of the collisions with static obstacles are head-on collisions,

a moving obstacle may run into the side or rear of the robot, where the front

bumper cannot protect the components. Thus, installation of a bumper which

surrounds the robot 360° is suggested to protect the robot from unexpected side-

collisions and rear-collisions.

5.2.3.4 Alarm Set

As mentioned in section 2.3.6.3, FL1, one of the flag output pins of the DSP

board, can be used as an alarm set. Since the executable program including

Chen’s crash avoidance system can modulate the output of FL1, it may be used as

a warning signal for prediction of up-coming collisions by connecting it to a

buzzer or a flashing light bulb. This feature will allow an observer to understand

when the crash avoidance system takes over the operator’s control of the robot.

5.2.3.5 Feedback Devices

The current configuration of ROACH is an open loop. In other words, the

input values of the speed and steering angle, fed into the crash avoidance system,

are not direct measurements from the actuators. The values are taken directly

from the inputs of the transmitter. Thus, in order to provide feedback to the

configuration, installation of a tachometer and a potentiometer for the motor and

servo, respectively, are suggested. However, since all programmable flag pins are

 40

currently in use, an additional circuit has to be built for the DSP board to receive

the signals from the feedback devices.

5.3 Future Work

Primary future work includes modifying Chen’s crash avoidance system, so

that the algorithm can be actually tested in ROACH. The robot may require some

changes after Chen’s crash avoidance system is implemented. For example, one

of the unknown factors that could slow down the performance of ROACH is the

total execution time of Chen’s crash avoidance system. Even though, in the

current configuration, a 12.6 ms execution time is reserved for the crash

avoidance algorithm, the actual time required by Chen’s crash avoidance system

will not be known until it is actually implemented. If the algorithm takes more

than 12.6 ms, it may have to be divided into parts, so that a portion of the

algorithm can be executed at each 12.6 ms. This modification is expected to slow

down the performance of the robot since the control algorithm takes more time to

update output pulses to the servo and speed controller.

Implementation of Chen’s crash avoidance system into ROACH should

definitely provide insights into its implementation on an actual size automobile. In

other words, the result of the implementation of Chen’s crash avoidance system

into ROACH should become a key to a crash avoidance of future automobiles. I

certainly hope that this technology will help to reduce the tragedies of automobile

crashes in the future.

 41

Fig. 1.1 ROACH - Picture

 42

Fig. 2.1 ROACH – AutoCAD Drawing

Sonar Sensors

Bumper

Servo

Batteries

Speed Controller Receiver

Electric Circuit Board
(Board-A)

DSP Board

Motor

 43

Fig. 2.2 Information Process – RC Car

v, φ (desired)

Radio
Transmitter

Receiver

Radio
Signal

Servo Speed
Controller

Motor

50 Hz Pulse
(CH1)

50 Hz Pulse
(CH2)

φ (output)

v (output)

Current

 44

Fig. 2.3 Information Process - ROACH

v, φ (desired)

Radio
Transmitter

Receiver

Radio
Signal

Servo Speed
Controller

Motor

50 Hz Pulse
(CH1)

50 Hz Pulse
(CH2)

φ (output)

v (output)

Current

DSP

50 Hz Pulse50 Hz Pulse

Sonar
Sensor

Echo Output

Initiate Input

 45

Fig. 2.4 Servo

Servo Horn

Rods to the
Front Wheels

 46

Fig. 2.5 50 Hz Pulses from the Receiver

HI

LO

CH1

HI

LO

CH2

20 ms

Pulse Width

 47

Fig. 2.6 Mabuchi Motor RS-540SH Data Sheet

 48

Fig. 2.7 Sonar Sensor Signals

Ultrasonic
Circuit Board

Transducer

Obstacle
Initiate Input

(INIT)
Echo Output

(ECHO)

16-Pulse Sonar
Transmit (49.4 kHz)

 49

Fig. 2.8 Time-of-Flight

HI

LO

INIT

HI

LO

ECHO
δ t

 50

Fig. 2.9 Blanking Time Configuration

HI

LO

INIT

HI

LO

ECHO

HI

LO

BLNK

HI

LO

BINH

2.38 ms

Primary Configured
Blanking Time

Desired Reading
Time Starts

 51

Fig. 2.10 Trace of the Sonar Pulse-Signals

Transducer

30°
Trace of the Sonar
Pulse-Signals

 52

Fig. 2.11 Circular Array of the Sonar Sensors

Ultrasonic
Circuit Board

Transducer

 53

Fig. 2.12 Numbers of the Sonar Sensors

Sonar 0

Sonar 1

Sonar 2
Sonar 3

Sonar 4

Sonar 5

Sonar 6

Sonar 7

Sonar 8

Sonar 9

Sonar 10

Sonar 11

 54

Fig. 2.13 ADSP-2181 EZ-KIT Lite

Expansion
Connectors

Serial Port
Connectors

DC Power
Supply

Connectors

ADSP-2181
Digital Signal

Processor

EPROM

Reset Button

Processor
Interrupt Button

Red LED
(FL1)

Green LED
(Power)

In-Circuit
Emulator
Connector

Audio Output

Audio Input

Input Source SelectorAD1847
Stereo Codec

(P3)(P2)

 55

Fig. 2.14 Electric Circuit – the DSP Board to Other Components

Speed Controller

Servo

Receiver

CH1

CH2

GND

GND

+V

+V

+V GND

+V

Signal

GND

+V

Signal

GND

DSP

P
F

1

P
F

2

F
L

0

F
L

2

+
V

G
N

D

Voltage
RegulatorsBattery-A

(6-cell)
Battery-B

(6-cell)

10
µF

 (
T

a)

22
0 µ

F

 56

Fig. 2.15 Sonar Interface Circuit

SELECT
1

Vcc
16

SELECT
2

DATA 0
15

SELECT
3

G2A
4

5
G2B

6
G1

DATA 1

DATA 2

DATA 3

DATA 4

14

13

12

11

DATA 7
7

DATA 5
10

GND
8

DATA 6
9

2

3

4

5

13

12

11

10

6 9

1
Vcc

14

GND
7 8

2

3

4

5

13

12

11

10

6 9

1
Vcc

14

GND
7 8

2

3

4

5

13

12

11

10

6 9

1
Vcc

14

GND
7 8

2

3

4

5

13

12

11

10

6 9

1
Vcc

14

GND
7 8

2

3

4

5

13

12

11

10

6 9

1
Vcc

14

GND
7 8

2

3

4

5

13

12

11

10

6 9

1
Vcc

14

GND
7 8

S
0

E
C

H
O

S
3

E
C

H
O

S
1

E
C

H
O

S
4

E
C

H
O

S
2

E
C

H
O

S
5

E
C

H
O

S
6

E
C

H
O

S
9

E
C

H
O

S
7

E
C

H
O

S
10

 E
C

H
O

S
8

E
C

H
O

S
11

 E
C

H
O

S
0

IN
IT

S
3

IN
IT

S
1

IN
IT

S
4

IN
IT

S
2

IN
IT

S
5

IN
IT

S
6

IN
IT

S
9

IN
IT

S
7

IN
IT

S
10

 IN
IT

S
8

IN
IT

S
11

 IN
IT

DSP 28 (PF3)
DSP 29 (PF4)
DSP 30 (PF5)
DSP 31 (PF6)
DSP 32 (PF7)

+5V (a)
GND

74LS138

74HCT125

74HCT125

74HCT125

74HCT125

74HCT125

74HCT125

P
u

ll-
U

p
 R

es
is

te
rs

 4
7K

 57

Fig. 2.16 Sonar Sensors Wiring

+5V (b) GND

8

4

7

2

9

1

SONAR 0

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 3

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 1

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 4

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 2

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 5

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 6

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 9

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 7

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 10

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 8

V+

GND

BINH

INIT

ECHO

BLNK

8

4

7

2

9

1

SONAR 11

V+

GND

BINH

INIT

ECHO

BLNK

DSP 25 (PF0)

To TRI-STATE
Buffers

(74HCT125)

To TRI-STATE
Buffers

(74HCT125)

To TRI-STATE
Buffers

(74HCT125)

To TRI-STATE
Buffers

(74HCT125)

To TRI-STATE
Buffers

(74HCT125)

To TRI-STATE
Buffers

(74HCT125)

 58

Fig. 2.17 Voltage Regulators

+7.2V
(Battery-B) GND

MC7805C

Input GND

Output

1 2

3

MC7805C

Input GND

Output

1 2

3

10
µF

 (
T

a)

10
µF

 (
T

a)

22
0µ

F

22
0 µ

F

+5V (a) +5V (b)

 59

Fig. 2.18 Electric Circuit Board Layout – Board-A

CH1

CH2

SV

CR

ALM

GND

25

5/16"
DIA

GND+ 8V

1/4"
DIA

GND+ 8V

+ +

C1 C2

S1

+ 5V

++
C1 C2

++

C1 C2

1/8

1/8 1/8

1/8

S2

 60

Fig. 2.19 Electric Circuit Board – Board-B

GND

+5V(b)

BINH

I0

I4

E0
E4

I3

I2

E3
E2

I6

E6

I9

I8

E9
E8

I1

I5

E1
E5

I7

I11

E7
E11

I11

E11

SS3 SS3

SS6 SS6

SS2

SS5 SS5

SS2

SS1

SS4 SS4

SS1

1/8 1/8

 61

Fig. 2.20 Rear Wheel Component

Motor

Gear-1

Gear-4 Rear Wheel

Gear-2

Gear-3

 62

Fig. 2.21 Frame

Top Platform

Middle Platform

Bottom Platform

 63

Fig. 2.22 Bumper

Rubber Foam

Spring Mount

Bumper-Frame

 64

Fig. 3.1 Time Schedule for the Control Algorithm

Timer-Setup

Timer-Reset

Pulse-In

Sonar-INIT

So
na

r-
Se

t 1

So
na

r-
Se

t 2

So
na

r-
Se

t 3

So
n a

r-
Se

t 4

So
na

r-
Se

t 5

So
n a

r-
Se

t 6

Crash Avoidance
Algorithm

Sonar-ECHO

Pulse-Out

Stand-By

Selection Block

Loop 0

3.5

16.1

20.0

Time (ms)

 65

Fig. 3.2 Single Wall Following

Sonar 1

Sonar 2

Sonar 3

2 ft

 66

Fig. 4.1 Wall Following – Straight

 67

Fig. 4.2 Wall Following – Right Turn

 68

Fig. 4.3 Wall Following – Left Turn

 69

Table 2.1 Expansion Connector – P2

Pin Number Signal Name Pin Number Signal Name
1 A0 2 A1
3 A2 4 A3
5 A4 6 A5
7 A6 8 A7
9 A8 10 A9

11 A10 12 A11
13 A12 14 A13
15 D0 16 D1
17 D2 18 D3
19 D4 20 D5
21 D6 22 D7
23 D8 24 D9
25 D10 26 D11
27 D12 28 D13
29 D14 30 D15
31 D16 32 D17
33 D18 34 D19
35 D20 36 D21
37 D22 38 D23
39 WR 40 RD
41 IOMS 42 BMS
43 DMS 44 CMS
45 PMS 46 BR
47 BGH 48 BG
49 VCC 50 GND

 70

Table 2.2 Expansion Connector – P3

Pin Number Signal Name Pin Number Signal Name
1 GND 2 IAD0
3 IAD1 4 IAD2
5 IAD3 6 IAD4
7 IAD5 8 IAD6
9 IAD7 10 IAD8

11 IAD9 12 IAD10
13 IAD11 14 IAD12
15 IAD13 16 IAD14
17 IAD15 18 GND
19 IACK 20 IAL
21 IS 22 IWR
23 IRD 24 GND
25 PF0 26 PF1
27 PF2 28 PF3
29 PF4 30 PF5
31 PF6 32 PF7
33 FL0 34 FL1
35 FL2 36 CLKOUT
37 RESET 38 IRQL0
39 IRQL1 40 IRQ2
41 PWD 42 PWDACK
43 CODECDIS 44 TXD0
45 TFS0 46 RFS0
47 RXD0 48 SCK0
49 VCC 50 GND

 71

Table 2.3 Demultiplexer

Pin 1 (PF5) Pin 2 (PF6) Pin 3 (PF7) Selected Output Sonar Set
0 0 0 Pin 15 none
1 0 0 Pin 14 Sonar Set 1
0 1 0 Pin 13 Sonar Set 2
1 1 0 Pin 12 Sonar Set 3
0 0 1 Pin 11 Sonar Set 4
1 0 1 Pin 10 Sonar Set 5
0 1 1 Pin 9 Sonar Set 6
1 1 1 Pin 7 none

INPUT OUTPUT

 72

Table 3.1 Interrupt Vector Table for the Control Algorithm

 jump start; rti; rti; rti; {00: reset }
 rti; rti; rti; rti; {04: IRQ2 }
 rti; rti; rti; rti; {08: IRQL1}
 rti; rti; rti; rti; {0c: IRQL0 }
 rti; rti; rti; rti; {10: SPORT0 tx }
 rti; rti; rti; rti; {14: SPORT0 rx }
 rti; rti; rti; rti; {18: IRQE }
 rti; rti; rti; rti; {1c: BDMA }
 rti; rti; rti; rti; {20: SPORT1tx or IRQ1}
 rti; rti; rti; rti; {24: SPORT1rx or IRQ0}
 jump update_signal; rti; rti; rti; {28: timer }
 rti; rti; rti; rti; {2c: power down }

 73

REFERENCES

ADSP-2100 Family Assembler Tools & Simulator Manual, Analog Devices, Inc.,
One Technology Way, Norwood, MA 02062, 1994.

ADSP-2100 Family C Tools Manual, Analog Devices, Inc., One Technology

Way, Norwood, MA 02062, 1994.

ADSP-2100 Family EZ-KIT Lite Reference Manual, Analog Devices, Inc., One

Technology Way, Norwood, MA 02062, 1995.

ADSP-2100 Family User’s Manual, Analog Devices, Inc., One Technology Way,

Norwood, MA 02062, 1995.

Polaroid 6500 Series Sonar Ranging Module, Polaroid Corporation, 1 Upland

Road, Norwood, MA 02062, 1991.

Power Pulse Speed Control, Dynamite, c/o Horizontal Hobby Distributors, Inc.,

4105 Fieldstone Road, Champaign, IL 61821, 1996.

Traffic Safety Facts 1996 Overview, National Highway Traffic Safety

Administration (NHTSA), U.S. Department of Transportation, 400
Seventh Street, S.W., Washington, D.C., 1996.

Arkin, R. C., “Motor Schema-Based Mobile Robot Navigation,” The

International Journal of Robotics Research, vol. 8, pp. 92-112, 1989.

Beer, R. D. and Chiel, H. J., “Simulations of Cockroach Locomotion and Escape,”

Biological Neural Networks in Invertebrate Neuroethology and Robotics,
Beer, R. D., Ritzmann, R. E. and McKenna, T. ed., Academic Press, chap.
XII, 1993.

Borenstein, J. and Koren, Y., “Real-Time Obstacle Avoidance for Fast Mobile

Robots in Cluttered Environments,” Proceeding of the IEEE International
Conference on Robotics and Automation, pp. 572-577, 1990.

Brooks, R. A., “A Robust Layered Control System for a Mobile Robot,” IEEE

Journal of Robotics and Automation, vol. RA-2, pp. 14-23, 1986.

Chen, C-T., “A Crash Avoidance System Based Upon the Cockroach Escape

Response,” Ph.D. dissertation, Case Western Reserve University,
Department of Mechanical and Aerospace Engineering, January 1996.

 74

Chen, C-T., Quinn, R. D. and Ritzmann, R. E., “A Crash Avoidance System

Based Upon the Cockroach Escape Response Circuit,” Proceeding of the
IEEE International Conference on Robotics and Automation, pp. 2007-
2012, 1997.

Gourley, C. and Trivedi, M., “Sonar Based Obstacle Avoidance and Mapping for

Fast Mobile Robots,” Proceeding of the IEEE International Conference on
Robotics and Automation, pp. 1306-1311, 1994.

Khatib, O., “Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots,” The International Journal of Robotics Research, vol. 5, pp. 90-
98, 1986.

Koren, Y. and Borenstein, J., “Potential Field Methods and Their Inherent

Limitations for Mobile Robot Navigation,” Proceeding of the IEEE
International Conference on Robotics and Automation, pp. 1398-1404,
1991.

Martens, J. H., “Enhanced Teleoperation of a Mobile Robot,” M.S. thesis, Case

Western Reserve University, Department of Electrical Engineering and
Applied Physics, May 1993.

Ming, L., Zalin, G. and Shuzi, Y., “Mobile Robot Fuzzy Control Optimization

Using Genetic Algorithm,” Artificial Intelligence in Engineering, vol. 10,
pp. 293-298, 1996.

Newman, W. S. and Hogan, N., “High Speed Robot Control and Obstacle

Avoidance Using Dynamic Potential Functions,” Proceeding of the IEEE
International Conference on Robotics and Automation, pp. 12-24, 1987.

Pao, Y. H. “Adaptive Pattern Recognition and Neural Networks,” Adison-Wesley

Publishing Company, Inc., 1989.

Pomerleau, D. A., “Neural Network Perception for Mobile Robot Guidance,”

Kluwer Academic Publishers, 1993.

Ritzmann, R. E., “The Neural Organization of Cockroach Escape and Its Role in

Context-Dependent Orientation,” Biological Neural Networks in
Invertebrate Neuroethology and Robotics, Beer, R. D., Ritzmann, R. E.
and McKenna, T. ed., Academic Press, chap. VI, 1993.

Schiller, I. and Tench, K.A., “A Neural-Network-Based Autonomous Underwater

Vehicle Guidance System,” Proceedings of the 6th International

 75

Symposium on Unmanned Untethered Submersible Technology, pp. 312-
319, 1989.

Touretzky, D. S. and Pomerleau, D. A. “What’s Hidden in the Hidden Layers?”

Byte, pp. 227-233, 1989.

Yung, N. H. C. and Ye, C., “Self-Learning Fuzzy Navigation of Mobile Vehicle,”

Proceedings of the 1996 3rd International Conference on Signal
Processing, vol. 2, pp. 1465-1468, 1996.

 76

APPENDIX A

ROACH DIMENSIONS

 77

Fig. A.1 ROACH – Side View

 78

Fig. A.2 ROACH – Top View

 79

Fig. A.3 ROACH – Front View

 80

APPENDIX B

LIST OF COMPONENTS

 81

Table B.1 ROCH Components

Component Manufacturer Part Name / Number
Approximate

Price

1:10 Scale RC Car Tamiya Blackfoot Ford F-150 Ranger $300

Receiver Futaba FP-R112JE

Servo Futaba FP-S148

Speed Controller Dynamite Power Pulse Speed Control $80

Motor Johnson

Transducer Polaroid
600 Series Instrument Grade
Electrostatic Transducer

$30

Ultrasonic Circuit
Board

Polaroid 6500 Series Sonar Ranging Module $25

DSP Board Analog Devices ADSP-2181 EZ-KIT Lite $75

Battery Dynamite DYNA-SPORT 1500 $20

 82

APPENDIX C

CONTROL ALGORITHM

 83

/**/
/* ASSEMBLER CODE - MOBILE ROBOT (ROACH) */
/**/

.module/ram/abs=0 sweet_robot;

/**/
/* INITIAL SETUP */
/**/

#include <DSP.h>

#define TSTEP 40 /* 40*30ns = 1200ns */
#define TLENGTH 10 /* 10*1200ns = 0.012ms */
#define READ_TIME 292 /* 292*0.012ms = 3.5ms */
#define TIME_CYCLE 1667 /* 1667*0.012ms = 20ms */
#define CYCLE_MAX 2500 /* 2500*0.012ms = 30ms */
#define SEVEN_CYCLES 11667 /* 11667_0.012ms = 140ms */
#define MIN_DISTANCE 75 /* 0.5ft */
#define MAX_DISTANCE 1050 /* 1050*0.012ms = 12.6ms (7ft max) */
#define ZERO 0
#define ONE 1
#define TWO 2
#define THREE 3
#define FOUR 4
#define FIVE 5
#define SIX 6
#define SEVEN 7
#define EIGHT 8
#define NINE 9
#define TEN 10
#define ELEVEN 11
#define TWELVE 12
#define SERVO_PLUS 118

.var/dm/ram clock;
.var/dm/ram SV_clock;
.var/dm/ram CT_clock;
.var/dm/ram sonar_clock;
.var/dm/ram CH1_time;
.var/dm/ram CH2_time;
.var/dm/ram CH1_flag;
.var/dm/ram CH2_flag;
.var/dm/ram sonar_flag;
.var/dm/ram sonar_switch;
.var/dm/ram sonar_set_new;
.var/dm/ram sonar_set_old;
.var/dm/ram neural_bypass;
.var/dm/ram SERVO_TIME_;
.var/dm/ram SERVO_PULSE_;
.var/dm/ram CTRLR_TIME_;
.var/dm/ram CTRLR_PULSE_;
.var/dm/ram ECHO1;
.var/dm/ram ECHO2;
.var/dm/ram SONAR_NEW_;
.var/dm/ram SONAR_OLD_;
.var/dm/ram sonar_angle1;
.var/dm/ram sonar_angle2;
.var/dm/ram THETA_NEW_;
.var/dm/ram THETA_OLD_;
.var/dm/ram DEL_T_;

.global SERVO_TIME_;
.global SERVO_PULSE_;
.global CTRLR_TIME_;
.global CTRLR_PULSE_;
.global SONAR_NEW_;

 84

.global SONAR_OLD_;

.global THETA_NEW_;

.global THETA_OLD_;

.global DEL_T_;

.init clock: 0;
.init SERVO_TIME_: 0;
.init SERVO_PULSE_: 0;
.init CTRLR_TIME_: 0;
.init CTRLR_PULSE_: 0;
.init CH1_time: 0;
.init CH2_time: 0;
.init SV_clock: 0;
.init CT_clock: 0;
.init CH1_flag: ZERO;
.init CH2_flag: ZERO;
.init sonar_flag: ZERO;
.init sonar_switch: ZERO;
.init sonar_set_new: ZERO;
.init sonar_set_old: ZERO;
.init neural_bypass: ONE;
.init sonar_clock: 0;
.init ECHO1: 0;
.init ECHO2: 0;
.init SONAR_NEW_: MAX_DISTANCE;
.init SONAR_OLD_: MAX_DISTANCE;
.init sonar_angle1: TWELVE;
.init sonar_angle2: TWELVE;
.init THETA_NEW_: TWELVE;
.init THETA_OLD_: TWELVE;
.init DEL_T_: 0;

/**/
/* NOTES */
/**/

/* Servo Maximum: 1.416ms (118) */
/* Servo 0-Position: 1.14ms (95) */
/* Servo Minimum: 0.864ms (72) */
/* Controler FWD Maximum: 1.14ms (95) */
/* Controler 0-position: 1.416ms (118) */
/* Controler BWD Maximum: 1.692ms (141) */
/* Distance Conversion: Y(in) = 0.093 * X(count) - 1.5 */
/* Distance Conversion: X(count) = (Y(in) + 1.5) / 0.093 */

/* PF0 (pin 25): BINH */
/* PF1 (pin 26): from CH1 */
/* PF2 (pin 27): from CH2 */
/* PF3 (pin 28): ECHO1 */
/* PF4 (pin 29): ECHO2 */
/* PF5 (pin 30): Mult1 */
/* PF6 (pin 31): Mult2 */
/* PF7 (pin 32): Mult3 */
/* FL0 (pin 33): to Servo */
/* FL1 (pin 34): Alarm */
/* FL2 (pin 35): to Controller */

/* Demulitplexer 000: 0 (pin 15) */
/* Demulitplexer 100: 1 (pin 14) -> SONAR SET1 */
/* Demulitplexer 010: 2 (pin 13) -> SONAR SET2 */
/* Demulitplexer 110: 3 (pin 12) -> SONAR SET3 */
/* Demulitplexer 001: 4 (pin 11) -> SONAR SET4 */
/* Demulitplexer 101: 5 (pin 10) -> SONAR SET5 */
/* Demulitplexer 011: 6 (pin 9) -> SONAR SET6 */
/* Demulitplexer 111: 7 (pin 7) */

/* SONAR SET1: SENSOR 0 & SENSOR 6 */

 85

/* SONAR SET2: SENSOR 3 & SENSOR 9 */
/* SONAR SET3: SENSOR 1 & SENSOR 7 */
/* SONAR SET4: SENSOR 4 & SENSOR 10 */
/* SONAR SET5: SENSOR 2 & SENSOR 8 */
/* SONAR SET6: SENSOR 5 & SENSOR 11 */

/**/
/* INTERRUPT VECTORS TABLE */
/**/

 jump start; rti; rti; rti; {00: reset }
 rti; rti; rti; rti; {04: IRQ2 }
 rti; rti; rti; rti; {08: IRQL1}
 rti; rti; rti; rti; {0c: IRQL0 }
 rti; rti; rti; rti; {10: SPORT0 tx }
 rti; rti; rti; rti; {14: SPORT0 rx }
 rti; rti; rti; rti; {18: IRQE }
 rti; rti; rti; rti; {1c: BDMA }
 rti; rti; rti; rti; {20: SPORT1tx or IRQ1}
 rti; rti; rti; rti; {24: SPORT1rx or IRQ0}
 jump update_signal; rti; rti; rti; {28: timer }
 rti; rti; rti; rti; {2c: power down }

/**/
/* Timer-Setup */
/**/

start:
 RESET FL1;
 AX0 = TSTEP;
 dm(TSCALE) = AX0; /* 16*30ns = 480ns */
 AX1 = TLENGTH;
 dm(TPERIOD) = AX1; /* 10*480ns = 0.0048ms */
 imask = b#0000000001; /* enable TIMER */
 AX0 = b#0111101111100001; /* PF1,PF2,PF3,PF4 = input */
 dm(PFTYPE) = AX0;
 AX1 = b#0000000000000000;
 dm(PFDATA) = AX1; /* output = 0 */
 ena TIMER;
 AR = ZERO;
 dm(sonar_flag) = AR;
wait: NOP;
 jump wait;

/**/
/* Timer_Reset */
/**/

time_reset:
 AX1 = TLENGTH;
 dm(TCOUNT) = AX1;
 AR = ZERO;
 dm(clock) = AR;
 dm(CH1_time) = AR;
 dm(CH2_time) = AR;
 dm(SV_clock) = AR;
 dm(CT_clock) = AR;
 dm(CH1_flag) = AR;
 dm(CH2_flag) = AR;
 dm(sonar_flag) = AR;
 dm(sonar_clock) = AR;
 dm(ECHO1) = AR;
 dm(ECHO2) = AR;
 AR = TWELVE;
 dm(sonar_angle1) = AR;
 dm(sonar_angle2) = AR;
 RESET FL0;

 86

 RESET FL2;
 AX1 = dm(PFDATA);
 AR = CLRBIT 0 OF AX1; /* BINH */
 AR = CLRBIT 5 OF AR; /* Demultiplexer 1 */
 AR = CLRBIT 6 OF AR; /* Demultiplexer 2 */
 AR = CLRBIT 7 OF AR; /* Demultiplexer 3 */
 dm(PFDATA) = AR;
 jump update_signal;

/**/
/* Pulse-In */
/**/

update_signal:
 AX0 = dm(clock);
 AY0 = READ_TIME;
 AR = AX0 - AY0;
 IF GE jump echo_check;
 AX1 = dm(CH1_flag);
 AY1 = ZERO;
 AR = AX1 - AY1;
 IF NE jump skip_read_CH1;
 AX1 = dm(PFDATA);
 AR = TSTBIT 1 OF AX1;
 IF NE jump skip_read_CH1;
 AY0 = dm(CH1_time);
 AR = AX0 - AY0;
 dm(SERVO_TIME_) = AR;
 AR = ONE;
 dm(CH1_flag) = AR;
skip_read_CH1:
 AX1 = dm(CH2_flag);
 AY1 = ZERO;
 AR = AX1 - AY1;
 IF NE jump skip_read_CH2;
 AX1 = dm(CH2_time);
 AY1 = ZERO;
 AR = AX1 - AY1;
 IF NE jump skip_wait_CH2;
 AX1 = dm(PFDATA);
 AR = TSTBIT 2 OF AX1;
 IF EQ jump skip_read_CH2;
 dm(CH2_time) = AX0;
skip_wait_CH2:
 AX1 = dm(PFDATA);
 AR = TSTBIT 2 OF AX1;
 IF NE jump skip_read_CH2;
 AY0 = dm(CH2_time);
 AR = AX0 - AY0;
 dm(CTRLR_TIME_) = AR;
 AR = ONE;
 dm(CH2_flag) = AR;
skip_read_CH2:
 jump add_clock;

/**/
/* Selection Block [Sonar-INIT - Sonar-ECHO] */
/**/

echo_check:
 AX1 = dm(sonar_flag);
 AY1 = ZERO;
 AR = AX1 - AY1;
 IF EQ jump send_sonar_pulse;
 AR = dm(sonar_clock);
 dm(ECHO1) = AR;
 dm(ECHO2) = AR;

 87

 AR = AR + 1;
 dm(sonar_clock) = AR;
 AX1 = dm(ECHO1);
 AY1 = MIN_DISTANCE;
 AR = AX1 - AY1;
 IF LT jump send_sonar_pulse;
 AR = AX1 - AY1;
 IF NE jump check_ECHO1;
 AX1 = dm(PFDATA);
 AR = SETBIT 0 OF AX1;
 dm(PFDATA) = AR;
check_ECHO1:
 AX1 = dm(PFDATA);
 AR = TSTBIT 3 OF AX1;
 IF EQ jump check_ECHO2;
 AX1 = dm(ECHO1);
 AY1 = dm(SONAR_NEW_);
 AR = AX1 - AY1;
 IF GT jump sonar_flag_down;
 dm(SONAR_NEW_) = AX1;
 AR = dm(sonar_angle1);
 dm(THETA_NEW_) = AR;
 AR = dm(sonar_switch);
 dm(sonar_set_new) = AR;
 jump sonar_flag_down;
check_ECHO2:
 AX1 = dm(PFDATA);
 AR = TSTBIT 4 OF AX1;
 IF EQ jump send_sonar_pulse;
 AX1 = dm(ECHO2);
 AY1 = dm(SONAR_NEW_);
 AR = AX1 - AY1;
 IF GT jump sonar_flag_down;
 dm(SONAR_NEW_) = AX1;
 AR = dm(sonar_angle2);
 dm(THETA_NEW_) = AR;
 AR = dm(sonar_switch);
 dm(sonar_set_new) = AR;
 jump sonar_flag_down;
sonar_flag_down:
 AR = ZERO;
 dm(sonar_flag) = AR;
 jump send_sonar_pulse;

/***/

send_sonar_pulse:
 AX0 = dm(clock);
 AY0 = MAX_DISTANCE;
 AR = AX0 - AY0;
 IF GT jump skip_send_pulse;
 AY0 = READ_TIME;
 AR = AX0 - AY0;
 IF NE jump send_driving_pulse;
 AR = ZERO;
 dm(SV_clock) = AR;
 dm(CT_clock) = AR;
sonar_set1:

 jump sonar_set2;

 AX1 = dm(sonar_switch);
 AY1 = ZERO;
 AR = AX1 - AY1;
 IF NE jump sonar_set2;
 AX1 = dm(PFDATA);
 AR = SETBIT 5 OF AX1;

 88

 AR = CLRBIT 6 OF AR;
 AR = CLRBIT 7 OF AR;
 dm(PFDATA) = AR;
 AR = ZERO;
 dm(sonar_angle1) = AR;
 AR = SIX;
 dm(sonar_angle2) = AR;
 AR = ONE;
 dm(sonar_flag) = AR;
 AR = ZERO;
 dm(sonar_clock) = AR;
 jump switch;
sonar_set2:
 AX1 = dm(sonar_switch);
 AY1 = ONE;
 AR = AX1 - AY1;
 IF NE jump sonar_set3;
 AX1 = dm(PFDATA);
 AR = CLRBIT 5 OF AX1;
 AR = SETBIT 6 OF AR;
 AR = CLRBIT 7 OF AR;
 dm(PFDATA) = AR;
 AR = THREE;
 dm(sonar_angle1) = AR;
 AR = NINE;
 dm(sonar_angle2) = AR;
 AR = ONE;
 dm(sonar_flag) = AR;
 AR = ZERO;
 dm(sonar_clock) = AR;
 jump switch;
sonar_set3:
 AX1 = dm(sonar_switch);
 AY1 = TWO;
 AR = AX1 - AY1;
 IF NE jump sonar_set4;
 AX1 = dm(PFDATA);
 AR = SETBIT 5 OF AX1;
 AR = SETBIT 6 OF AR;
 AR = CLRBIT 7 OF AR;
 dm(PFDATA) = AR;
 AR = ONE;
 dm(sonar_angle1) = AR;
 AR = SEVEN;
 dm(sonar_angle2) = AR;
 AR = ONE;
 dm(sonar_flag) = AR;
 AR = ZERO;
 dm(sonar_clock) = AR;
 jump switch;
sonar_set4:
 AX1 = dm(sonar_switch);
 AY1 = THREE;
 AR = AX1 - AY1;
 IF NE jump sonar_set5;
 AX1 = dm(PFDATA);
 AR = CLRBIT 5 OF AX1;
 AR = CLRBIT 6 OF AR;
 AR = SETBIT 7 OF AR;
 dm(PFDATA) = AR;
 AR = FOUR;
 dm(sonar_angle1) = AR;
 AR = TEN;
 dm(sonar_angle2) = AR;
 AR = ONE;
 dm(sonar_flag) = AR;
 AR = ZERO;

 89

 dm(sonar_clock) = AR;
 jump switch;
sonar_set5:
 AX1 = dm(sonar_switch);
 AY1 = FOUR;
 AR = AX1 - AY1;
 IF NE jump sonar_set6;
 AX1 = dm(PFDATA);
 AR = SETBIT 5 OF AX1;
 AR = CLRBIT 6 OF AR;
 AR = SETBIT 7 OF AR;
 dm(PFDATA) = AR;
 AR = TWO;
 dm(sonar_angle1) = AR;
 AR = EIGHT;
 dm(sonar_angle2) = AR;
 AR = ONE;
 dm(sonar_flag) = AR;
 AR = ZERO;
 dm(sonar_clock) = AR;
 jump switch;
sonar_set6:
 AX1 = dm(sonar_switch);
 AY1 = FIVE;
 AR = AX1 - AY1;
 IF NE jump bypass_check;
 AX1 = dm(PFDATA);
 AR = CLRBIT 5 OF AX1;
 AR = SETBIT 6 OF AR;
 AR = SETBIT 7 OF AR;
 dm(PFDATA) = AR;
 AR = FIVE;
 dm(sonar_angle1) = AR;
 AR = ELEVEN;
 dm(sonar_angle2) = AR;
 AR = ONE;
 dm(sonar_flag) = AR;
 AR = ZERO;
 dm(sonar_clock) = AR;
 jump switch;

/**/
/* Selection Block [Crash Avoidance Algorithm] */
/**/

bypass_check:
 AX1 = dm(sonar_switch);
 AY1 = SIX;
 AR = AX1 - AY1;
 IF NE jump switch;
 AX1 = TWELVE;
 AY1 = dm(THETA_NEW_);
 AR = AX1 - AY1;
 IF EQ jump neural_bypass_on;
 AX1 = dm(neural_bypass);
 AY1 = ONE;
 AR = AX1 - AY1;
 IF EQ jump neural_bypass_off;
calculation_DEL_T:
 AX1 = dm(sonar_set_new);
 AY1 = dm(sonar_set_old);
 MY1 = TIME_CYCLE;
 AR = AX1 - AY1;
 SR0 = AR;
 MR = SR0 * MY1 (ss);
 AY0 = SEVEN_CYCLES;
 AR = MR0 + AY0;

 90

 AX1 = AR;
 AR = dm(SONAR_NEW_);
 AY1 = dm(SONAR_OLD_);
 AR = AR - AY1;
 SR = LSHIFT AR BY -15 (HI);
 AY1 = SR1;
 AR = MR0 + AY1;
 SR = ASHIFT AR BY -1 (HI);
 AY0 = SR1;
 AR = AX1 + AY0;
 dm(DEL_T_) = AR;
 jump call_neural_net;
call_neural_net:
 call main_;
 jump store_old_data;
neural_bypass_on:
 AR = ONE;
 dm(neural_bypass) = AR;
 jump bypass_signal;
neural_bypass_off:
 AR = ZERO;
 dm(neural_bypass) = AR;
 jump bypass_signal;
bypass_signal:
 AR = dm(SERVO_TIME_);
 dm(SERVO_PULSE_) = AR;
 AR = dm(CTRLR_TIME_);
 dm(CTRLR_PULSE_) = AR;
store_old_data:
 AR = dm(SONAR_NEW_);
 dm(SONAR_OLD_) = AR;
 AR = MAX_DISTANCE;
 dm(SONAR_NEW_) = AR;
 AR = dm(THETA_NEW_);
 dm(THETA_OLD_) = AR;
 AR = TWELVE;
 dm(THETA_NEW_) = AR;
 AR = dm(sonar_set_new);
 dm(sonar_set_old) = AR;
 jump switch;
switch:
 AR = dm(sonar_switch);
 AR = AR + 1;
 dm(sonar_switch) = AR;
 AX1 = dm(sonar_switch);
 AY1 = SIX;
 AR = AX1 - AY1;
 IF LE jump send_driving_pulse;
 AR = ZERO;
 dm(sonar_switch) = AR;
 jump send_driving_pulse;

/**/
/* Pulse-Out */
/**/

send_driving_pulse:
 AX1 = dm(SV_clock);
 AY1 = dm(SERVO_PULSE_);
 AR = AX1 - AY1;
 IF GE RESET FL0;
 IF LT SET FL0;
 AX1 = dm(CT_clock);
 AY1 = dm(CTRLR_PULSE_);
 AR = AX1 - AY1;
 IF GE RESET FL2;
 IF LT SET FL2;

 91

 AR = dm(SV_clock);
 AR = AR + 1;
 dm(SV_clock) = AR;
 AR = dm(CT_clock);
 AR = AR + 1;
 dm(CT_clock) = AR;
skip_send_pulse:
 AX0 = dm(clock);
 AY0 = MAX_DISTANCE;
 AR = AX0 - AY0;
 IF LE jump add_clock;
 AX1 = dm(PFDATA);
 AR = TSTBIT 1 OF AX1;
 IF NE jump time_reset;

/**/
/* Stand-By */
/**/

add_clock:
 AX0 = dm(clock);
 AY0 = CYCLE_MAX;
 AR = AX0 - AY0;
 IF GT rti;
 AR = AX0 + 1;
 dm(clock) = AR;
 rti;

/**/
/* CRASH AVOIDANCE */
/**/

main_:

/* Contents of the crash avoidance algorithm. */

rts;

/**/
/* END */
/**/

.endmod;

 92

APPENDIX D

SIMPLE CRASH AVOIDANCE ALGORITHM

(In C Language: as an External Program)

 93

/**/
/* C CODE – A DRUNKEN SAILOR WALK (ROACH) */
/**/

#define TEST_DISTANCE1 338
#define TEST_DISTANCE2 338
#define SERVO_PLUS 118
#define SERVO_MINUS 72
#define CTRLR_FWD_MAX 95
#define CTRLR_ZERO 118
#define CTRLR_BWD_MAX 141

extern int SERVO_TIME;
extern int SERVO_PULSE;
extern int CTRLR_TIME;
extern int CTRLR_PULSE;
extern int SONAR_NEW;
extern int SONAR_OLD;

INTELLIGENCE ()
{
 if (SONAR_NEW < TEST_DISTANCE1) AVOIDWALL();
 else
 if (SONAR_NEW > TEST_DISTANCE2) FINDWALL();
 else
 ZERO_POSITION();
 return;
}

ZERO_POSITION ()
{
 SERVO_PULSE = SERVO_TIME;

CTRLR_PULSE = CTRLR_TIME;
asm("RESET FL1;");

 return;
}

FINDWALL ()
{
 SERVO_PULSE = SERVO_PLUS;
 CTRLR_PULSE = CTRLR_TIME;
 asm("SET FL1;");
 return;
}

AVOIDWALL ()
{
 SERVO_PULSE = SERVO_MINUS;
 CTRLR_PULSE = CTRLR_TIME;

asm("TOGGLE FL1;");
 return;
}

 94

APPENDIX E

SIMPLE CRASH AVOIDANCE ALGORITHM

(In Assembly Language)

 95

/**/
/* ASSEMBLER CODE – A DRUNKEN SAILOR WALK (ROACH) */
/**/

main_:
 ay1=dm(SONAR_NEW_);
 ax1=337;
 af=ay1-ax1;
 if gt jump mainL2_;
 call AVOIDWALL_;
 jump mainL1_;
mainL2_:
 ay1=dm(SONAR_NEW_);
 ax1=338;
 af=ay1-ax1;
 if le jump mainL4_;
 call FINDWALL_;
 jump mainL1_;
mainL4_:
 call ZERO_POSITION_;
mainL1_:
 rts;

ZERO_POSITION_:
 ax1=dm(SERVO_TIME_);
 dm(SERVO_PULSE_)=ax1;
 ax1=dm(CTRLR_TIME_);
 dm(CTRLR_PULSE_)=ax1;
 RESET FL1;
 rts;

FINDWALL_:
 ax1=118;
 dm(SERVO_PULSE_)=ax1;
 ax1=dm(CTRLR_TIME_);
 dm(CTRLR_PULSE_)=ax1;
 SET FL1;
 rts;

AVOIDWALL_:
 ax1=72;
 dm(SERVO_PULSE_)=ax1;
 ax1=dm(CTRLR_TIME_);
 dm(CTRLR_PULSE_)=ax1;
 TOGGLE FL1;
 rts;

 96

APPENDIX F

SIMPLE CRASH AVOIDANCE ALGORITHM

(In Assembly Language: as an External Program)

 97

/**/
/* ASSEMBLER CODE – A DRUNKEN SAILOR WALK (ROACH) */
/**/

! Analog Devices ADSP21XX
.MODULE/RAM _track_;
!gcc_compiled
.external SONAR_NEW_;
.external AVOIDWALL_;
.external FINDWALL_;
.external ZERO_POSITION_;

.entry main_;
main_:
! FUNCTION PROLOGUE: main
 mr1=toppcstack; ! get return address
 si=m4;
 m4=i4; ! new frame ptr <= old stack ptr
 m5=-1;
 dm(i4,m5)=si; ! save old frame pointer
 dm(i4,m5)=mr1; ! save return address
! saving registers:
 dm(i4,m5)=ax1;
! END FUNCTION PROLOGUE: main
 ay1=dm(SONAR_NEW_);
 ax1=337;
 af=ay1-ax1;
 if gt jump mainL2_;
 call AVOIDWALL_;
 jump mainL1_;
mainL2_:
 ay1=dm(SONAR_NEW_);
 ax1=338;
 af=ay1-ax1;
 if le jump mainL4_;
 call FINDWALL_;
 jump mainL1_;
mainL4_:
 call ZERO_POSITION_;
mainL1_:
! FUNCTION EPILOGUE: main
 i6=m4;
 m5=-1;
 si=dm(i6,m5); ! old frame pointer
 mr1=dm(i6,m5); ! return address
! restoring registers:
 ax1=dm(i6,m5);
 i4=m4; ! reset stack pointer
 i6=mr1;
 m4=si; ! reset frame pointer
! END FUNCTION EPILOGUE: main
 jump (i6);

.external SERVO_PULSE_;
.external SERVO_TIME_;
.external CTRLR_PULSE_;
.external CTRLR_TIME_;
.entry ZERO_POSITION_;
ZERO_POSITION_:
! FUNCTION PROLOGUE: ZERO_POSITION
 mr1=toppcstack; ! get return address
 si=m4;
 m4=i4; ! new frame ptr <= old stack ptr
 m5=-1;
 dm(i4,m5)=si; ! save old frame pointer
 dm(i4,m5)=mr1; ! save return address

 98

! saving registers:
 dm(i4,m5)=ax1;
! END FUNCTION PROLOGUE: ZERO_POSITION
 ax1=dm(SERVO_TIME_);
 dm(SERVO_PULSE_)=ax1;
 ax1=dm(CTRLR_TIME_);
 dm(CTRLR_PULSE_)=ax1;
!APP
 RESET FL1;
!NO_APP
! FUNCTION EPILOGUE: ZERO_POSITION
 i6=m4;
 m5=-1;
 si=dm(i6,m5); ! old frame pointer
 mr1=dm(i6,m5); ! return address
! restoring registers:
 ax1=dm(i6,m5);
 i4=m4; ! reset stack pointer
 i6=mr1;
 m4=si; ! reset frame pointer
! END FUNCTION EPILOGUE: ZERO_POSITION
 jump (i6);

.entry FINDWALL_;
FINDWALL_:
! FUNCTION PROLOGUE: FINDWALL
 mr1=toppcstack; ! get return address
 si=m4;
 m4=i4; ! new frame ptr <= old stack ptr
 m5=-1;
 dm(i4,m5)=si; ! save old frame pointer
 dm(i4,m5)=mr1; ! save return address
! saving registers:
 dm(i4,m5)=ax1;
! END FUNCTION PROLOGUE: FINDWALL
 ax1=118;
 dm(SERVO_PULSE_)=ax1;
 ax1=dm(CTRLR_TIME_);
 dm(CTRLR_PULSE_)=ax1;
!APP
 SET FL1;
!NO_APP
! FUNCTION EPILOGUE: FINDWALL
 i6=m4;
 m5=-1;
 si=dm(i6,m5); ! old frame pointer
 mr1=dm(i6,m5); ! return address
! restoring registers:
 ax1=dm(i6,m5);
 i4=m4; ! reset stack pointer
 i6=mr1;
 m4=si; ! reset frame pointer
! END FUNCTION EPILOGUE: FINDWALL
 jump (i6);

.entry AVOIDWALL_;
AVOIDWALL_:
! FUNCTION PROLOGUE: AVOIDWALL
 mr1=toppcstack; ! get return address
 si=m4;
 m4=i4; ! new frame ptr <= old stack ptr
 m5=-1;
 dm(i4,m5)=si; ! save old frame pointer
 dm(i4,m5)=mr1; ! save return address
! saving registers:
 dm(i4,m5)=ax1;
! END FUNCTION PROLOGUE: AVOIDWALL

 99

 ax1=72;
 dm(SERVO_PULSE_)=ax1;
 ax1=dm(CTRLR_TIME_);
 dm(CTRLR_PULSE_)=ax1;
!APP
 TOGGLE FL1;
!NO_APP
! FUNCTION EPILOGUE: AVOIDWALL
 i6=m4;
 m5=-1;
 si=dm(i6,m5); ! old frame pointer
 mr1=dm(i6,m5); ! return address
! restoring registers:
 ax1=dm(i6,m5);
 i4=m4; ! reset stack pointer
 i6=mr1;
 m4=si; ! reset frame pointer
! END FUNCTION EPILOGUE: AVOIDWALL
 jump (i6);

.ENDMOD;

 100

APPENDIX G

CONTROL ALGORITHM - C INTERFACE

 101

/**/
/* C-Interface */
/**/

virtual_insanity:
 mr1 = toppcstack;
 mr0 = MAGIC_NUMBER;
 call ___lib_save_large_frame;

call main_;
 mr0 = MAGIC_NUMBER;
 call ___lib_restore_large_frame;
 rts;

